Phase diagram of the chromatic polynomial on a torus

نویسندگان

  • Jesper Lykke Jacobsen
  • Jesús Salas
چکیده

We study the zero-temperature partition function of the Potts antiferromagnet (i.e., the chromatic polynomial) on a torus using a transfer-matrix approach. We consider squareand triangular-lattice strips with fixed width L, arbitrary length N , and fully periodic boundary conditions. On the mathematical side, we obtain exact expressions for the chromatic polynomial of widths L = 5, 6, 7 for the square and triangular lattices. On the physical side, we obtain the exact phase diagrams for these strips of width L and infinite length, and from these results we extract useful information about the infinite-volume phase diagram of this model: in particular, the number and position of the different phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary chromatic polynomial

We consider proper colorings of planar graphs embedded in the annulus, such that vertices on one rim can take Qs colors, while all remaining vertices can take Q colors. The corresponding chromatic polynomial is related to the partition function of a boundary loop model. Using results for the latter, the phase diagram of the coloring problem (with real Q and Qs) is inferred, in the limits of two...

متن کامل

Chromatic polynomials of some nanostars

Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most  colours, which is for a fixed graph G , a polynomial in  , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.

متن کامل

A new result on chromaticity of K4-homoemorphs with girth 9

For a graph $G$, let $P(G,lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if any graph chromatically equivalent to $G$ is isomorphic to $G$. A $K_4$-homeomorph is a subdivision of the complete graph $K_4$. In this paper, we determine a family of chromatically uni...

متن کامل

Chromatic Polynomial, Colored Jones Function and Q-binomial Counting

Abstract. We define a q-chromatic function on graphs, list some of its properties and provide some formulas in the class of general chordal graphs. Then we relate the q-chromatic function to the colored Jones function of knots. This leads to a curious expression of the colored Jones function of a knot diagram K as a ’defected chromatic operator’ applied to a power series whose coefficients are ...

متن کامل

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007